
504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  1 

 

3.1 PHP with MySQL 

 

➢ PHP is a powerful server-side scripting language, and MySQL is a popular open-

source relational database.  

 

➢ Together, they are widely used to build dynamic and data-driven websites. 

 

What is MySQL? 

➢ MySQL is a Relational Database Management System (RDBMS). 

➢ It stores data in tables consisting of rows and columns. 

➢ Commonly used with PHP to store, retrieve, and manage data. 

PHP and MySQL 

 
PHP can connect to MySQL databases, execute SQL queries, and interact with 

data (insert, read, update, delete). 

        The mysqli (MySQL Improved) extension is used for this purpose. It supports. 

➢ Procedural and Object-Oriented style 

➢ Security features like prepared statements 

Commonly Used mysqli Functions – PHP + MySQL 

  

     Function Descriptio

n 

Syntax Example 

   

mysqli_connect(

) 

Connect to 

MySQL 

database 

server 

mysqli_connect(host, 

user, password, database) 

$conn = mysqli_connect 

("localhost", "root", "", 

"studentDB"); 

   

mysqli_select_d

b() 

Selects a 

database 

after 

connecting 

mysqli_select_db(connect

ion, db_name) 

mysqli_select_db($conn, 

"studentDB"); 

   

mysqli_query() 

Executes 

SQL queries 

mysqli_query(connection, 

sql) 

$result = 

mysqli_query($conn, 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  2 

 

(SELECT, 

INSERT, 

etc.) 

"SELECT * FROM 

students"); 

   mysqli_fetch_ 

a assoc() 

Fetches 

result row 

as 

associative 

array 

mysqli_fetch_assoc(result

) 

$row=mysqli_fetch_assoc 

($result); 

   mysqli_num_ 

r  rows() 

Returns 

number of 

rows in 

result set 

mysqli_num_rows(result) if(mysqli_num_rows($res

ult) > 0) { ... } 

   mysqli_error() Returns last 

error from 

connection 

mysqli_error(connection) echo 

mysqli_error($conn); 

   mysqli_close() Closes the 

database 

connection 

mysqli_close(connection) mysqli_close($conn); 

 

3.1.1 Connecting to Databases using mysqli 

This involves establishing a connection between your PHP script and the MySQL database 

using mysqli_connect() function. 

You need: 

➢ Hostname (usually "localhost") 

➢ Username (usually "root") 

➢ Password (default is blank in local server) 

➢ Database name 

3.1.2 Creating Databases and Tables 

➢ Database: A container that holds tables and data. 

➢ Table: Structure to store data in rows and columns. 

Using SQL commands like CREATE DATABASE and CREATE TABLE, you can 

define where and how data will be stored. 

3.1.3 Executing CRUD Operations 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  3 

 

CRUD stands for: 

➢ Create → INSERT data into a table 

➢ Read → SELECT data from a table 

➢ Update → UPDATE existing data 

➢ Delete → DELETE data from a table 

➢ PHP uses SQL queries to perform these operations with the help of 

mysqli_connect("hostname", "username", "password", 

"database_name");mysqli_query(). 

3.1.4 Using Clauses: WHERE, ORDER BY, LIMIT 

These are SQL clauses that help refine data retrieval: 

➢ WHERE: Filter records based on condition 

➢ ORDER BY: Sort records (ascending/descending) 

➢ LIMIT: Restrict number of rows returned 

Practical Implementations: 

Connecting to Databases Using mysqli 

To use a MySQL database with PHP, we must connect to it using the mysqli_connect() 

function. 

Syntax: 

mysqli_connect("hostname", "username", "password", "database_name"); 

➢ hostname: Usually "localhost" when using XAMPP/WAMP 

➢ username: "root" by default 

➢ password: Usually blank ("") for local server 

➢ database_name: The name of your database 

Example: 

<?php 

$conn = mysqli_connect("localhost", "root", "", "studentDB"); 

 

if (!$conn) { 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  4 

 

    die("Connection failed: " . mysqli_connect_error()); 

} 

echo "Connected successfully!"; 

?> 

 

INSERT Example: 

<?php 

$conn = mysqli_connect("localhost", "root", "", "studentDB"); 

 

$sql = "INSERT INTO students (name, email, age)  

        VALUES ('Rahul Mehta', 'rahul@gmail.com', 21)"; 

if (mysqli_query($conn, $sql)) { 

    echo "Record inserted successfully!"; 

} else { 

    echo "Error: " . mysqli_error($conn); 

} 

?> 

 

  SELECT Example: 

<?php 

$conn = mysqli_connect("localhost", "root", "", "studentDB"); 

 

$sql = "SELECT * FROM students"; 

$result = mysqli_query($conn, $sql); 

 

while($row = mysqli_fetch_assoc($result)) { 

    echo "Name: " . $row["name"] . " - Email: " . $row["email"] . "<br>"; 

} 

?> 

   

 UPDATE Example: 

<?php 

$conn = mysqli_connect("localhost", "root", "", "studentDB"); 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  5 

 

 

$sql = "UPDATE students SET age = 22 WHERE name = 'Rahul Mehta'"; 

if (mysqli_query($conn, $sql)) { 

    echo "Record updated successfully!"; 

} else { 

    echo "Error updating record: " . mysqli_error($conn); 

} 

?> 

 

4. DELETE Example: 

 

<?php 

$conn = mysqli_connect("localhost", "root", "", "studentDB"); 

 

$sql = "DELETE FROM students WHERE name = 'Rahul Mehta'"; 

if (mysqli_query($conn, $sql)) { 

    echo "Record deleted successfully!"; 

} else { 

    echo "Error deleting record: " . mysqli_error($conn); 

} 

?> 

 

3.1.4 Using Clauses: WHERE, ORDER BY, LIMIT 

1. WHERE Clause 

Used to filter records based on a condition. 

Example: 

$sql = "SELECT * FROM students WHERE age > 20"; 

2. ORDER BY Clause 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  6 

 

Used to sort results either ascending (ASC) or descending (DESC). 

Example: 

$sql = "SELECT * FROM students ORDER BY age DESC"; 

3. LIMIT Clause 

Used to limit the number of records returned. 

Example: 

$sql = "SELECT * FROM students LIMIT 3"; 

Combined Example: 

$sql = "SELECT * FROM students WHERE age > 18 ORDER BY age DESC LIMIT 2"; 

This query will return top 2 students whose age is more than 18, sorted from highest to lowest age. 

3. 2 AJAX for Backend Integration 

• AJAX (Asynchronous JavaScript and XML)  

• AJAX is not a programming language. 

• It allows web pages to send/receive data from the server in the background without 

reloading the entire page. 

• AJAX is not a programming language—it’s a technique that uses: 

o JavaScript → to send/receive data. 

o XMLHttpRequest / Fetch API → to communicate with the server. 

o PHP (or any backend language) → to process the request and return a 

response. 

• Used in: 

o Search suggestions (like Google search box). 

o Submitting forms without refreshing. 

o Loading comments, likes, etc. dynamically. 

• AJAX just uses a combination of: 

o A browser built-in XMLHttpRequest object (to request data from a web 

server) 

o JavaScript and HTML DOM (to display or use the data) 

• AJAX facilitates backend integration by enabling web pages to exchange data with 

a server asynchronously, without requiring a full page reload.  

• This improves user experience by allowing for dynamic content updates and 

enhanced interactivity. 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  7 

 

• AJAX allows web pages to be updated asynchronously by exchanging data with a 

web server behind the scenes. This means that it is possible to update parts of a web 

page, without reloading the whole page. 

 
• Synchronous vs Asynchronous 

o Synchronous: Request → Wait for server → Page reloads. 

o Asynchronous (AJAX): Request → Page doesn’t reload → Only response 

updates specific part of the page. 

• Basic AJAX Workflow 

o User action (like button click). 

o JavaScript sends AJAX request to PHP file. 

o PHP processes data and sends back a response. 

o JavaScript updates webpage dynamically. 

Flow for below code – 

1. An event occurs in a web page (the page is loaded, a button is clicked) 

2. An XMLHttpRequest object is created by JavaScript 

3. The XMLHttpRequest object sends a request to a web server 

4. The server processes the request 

5. The server sends a response back to the web page 

6. The response is read by JavaScript 

7. Proper action (like page update) is performed by JavaScript 

 

Index.php  

 

<!DOCTYPE html> 

<html> 

<script> 

function loadDoc() { 

  var xhttp = new XMLHttpRequest(); 

  xhttp.onreadystatechange = function() { 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  8 

 

    if (this.readyState == 4 && this.status == 200) { 

     document.getElementById("demo").innerHTML = this.responseText; 

    } 

  }; 

  xhttp.open("GET", "Hello.php", true); 

  xhttp.send(); 

} 

</script> 

<body> 

 

<div id= “demo"> 

  <h2>AJAX button click event to load data from function</h2> 

  <button type="button" onclick="loadDoc()">Submit</button> 

</div> 

 

</body> 

</html> 

 

Here,  

• <div> section is used to display information from a server. 

• <button> calls a function (if it is clicked) 

 

Hello.php 

<p>Hello</p> 

<h1>Good Morning</h1> 

<p> 

AJAX is a developer's dream, because you can: 

 

Update a web page without reloading the page 

Request data from a server - after the page has loaded 

Receive data from a server - after the page has loaded 

Send data to a server - in the background 

</p> 

 

 

Output 

 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  9 

 

 
After clicking on submit button 

 

 
 

The XMLHttpRequest Object 

• The XMLHttpRequest object can be used to exchange data with a server 

behind the scenes. This means that it is possible to update parts of a web 

page, without reloading the whole page. 

var xhttp = new XMLHttpRequest(); 

• AJAX makes web apps more interactive and faster. 

• It works using JavaScript + PHP (or any backend). 

o Always check: 

o readyState == 4 → request finished. 

o status == 200 → success. 

o Use GET for fetching data and POST for sending form data. 

AJAX - Send a Request to a Server 

• The XMLHttpRequest object is used to exchange data with a server. 

• To send a request to a server, we use the open() and send() methods of the 

XMLHttpRequest object- 

xhttp.open("GET", "hello.txt", true); 

xhttp.send(); 

Method Description 

open(method, url, async) Specifies the type of request 

method: the type of request: GET or POST 

url: the server (file) location 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  10 

 

async: true (asynchronous) or false 

(synchronous) 

Send() Sends the request to the server (used for GET) 

send(string) Sends the request to the server (used for POST) 

 

Method  

• GET is simpler and faster than POST, and can be used in most cases. 

• Condition in which post is more suitable – 

o A cached file is not an option (update a file or database on the 

server). 

o Sending a large amount of data to the server (POST has no size 

limitations). 

o Sending user input (which can contain unknown characters), 

POST is more robust and secure than GET. 

Simple GET request 

xhttp.open("GET", "demo_get.php", true); 

xhttp.send(); 

Add unique ID to the URL (Without it you may get a cached 

result) 

xhttp.open("GET", "demo_get.asp?t=" + Math.random(), true); 

xhttp.send(); 

If you want to send information with the GET method, add the 

information to the URL: 

xhttp.open("GET", "demo_get2.asp?fname=Henry&lname=Ford

", true); 

xhttp.send();  

 

 

 

3.2.3 Real-time search functionality 

• Real-time search means as the user types in a search box, results appear instantly 

without reloading the page. 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  11 

 

o Example: Google search suggestions. 

• Why use AJAX for Search? 

o Without AJAX → You must submit the form and reload the page every time. 

o With AJAX → The search box automatically fetches results from the server 

as you type. 

o Benefits: Fast, interactive, better user experience. 

• How It Works (Flow) 

o User types in search box. 

o JavaScript (AJAX) sends the typed text to a PHP file. 

o PHP searches the database (MySQL) for matching records. 

o PHP returns results. 

o AJAX updates the page with results instantly. 

Connect_db.php 

 

<?php 

$ser = "localhost"; 

$host = "root"; 

$pwd = ""; 

 

$con = mysqli_connect($ser,$host,$pwd); 

 

if ($con) 

{ 

    // echo "Database connected successfully!!!"; 

} 

else 

{ 

    die("Cannot connect" . $con->connect_error); 

} 

 

mysqli_select_db($con,"student_db"); 

 

//CREATE DATABASE db_name 

/*$query = "CREATE DATABASE stud_db"; 

if (mysqli_query($con,$query) == true) 

{ 

    echo "Database created successfully!!!"; 

} 

else 

{ 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  12 

 

    die("Cannot create database" . $con->connect_error); 

} 

 

mysqli_select_db($con,"stud_db"); 

$query = "create table if not exists tbl_name (id int primary key, name varchar(30));"; 

if (mysqli_query($con,$query) == true) 

{ 

    echo "Table created successfully!!!"; 

} 

else 

{ 

    die("Cannot create table" . $con->connect_error); 

} 

mysqli_close($con); 

*/ 

 

?> 

 

Index.html 

 

<!DOCTYPE html> 

<html> 

<head> 

    <title>AJAX Live Search</title> 

    <script src="https://code.jquery.com/jquery-3.6.0.min.js"></script> 

</head> 

<body> 

    <h2>Search Users</h2> 

    <input type="text" id="search" placeholder="Type a name..."> 

    <div id="result"></div> 

 

    <script> 

        $(document).ready(function(){ 

            $("#search").keyup(function(){ 

                query = $('#search').val(); 

                if(query!='') 

                { 

                    $.ajax({ 

                        url: 'search.php', 

                        method: 'POST', 

                        data: {query:query}, 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  13 

 

                        success: function(data){ 

                            if(data=="No data found!!"){ 

                                $('#result').html("No data found!!!"); 

                            } 

                            else{ 

                                $('#result').html(data); 

                            } 

                        } 

                    }) 

                } 

                else 

                { 

                    $('#result').html(""); 

                } 

            }) 

        }) 

    </script> 

     

</body> 

</html> 

 

Search.php 

 

<?php 

 

require_once('connect_db.php'); 

 

if (isset($_POST['query'])) 

{ 

    $data = $con->real_escape_string($_POST['query']); 

 

    $sql = "SELECT name,email FROM stud_data WHERE name LIKE '%$data%' OR 

email LIKE '%$data%';"; 

 

    $result = mysqli_query($con,$sql); 

     

    if($result->num_rows>0){ 

        echo "<ul type='circle'>"; 

        while($row = $result->fetch_assoc()){ 

            echo "<li>" . $row['name'] . " - " . $row['email'] . "</li>"; 

        } 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  14 

 

        echo "</ul>"; 

    } 

    else{ 

        echo "No data found!!"; 

    } 

} 

 

$con->close(); 

 

?> 

 

JSON 

• JSON = JavaScript Object Notation. 

• It is a lightweight format for storing and transferring data between server and client. 

• Data is stored as key–value pairs (similar to objects in JavaScript). 

• Format: 

{ 

"name": "Riya", 

"age": 22, 

"city": "Surat" 

} 

• Why JSON for AJAX? 

o Easy for both JavaScript and PHP to understand. 

o More structured than plain text. 

o Often used in APIs and AJAX responses. 

Sending JSON from PHP to JavaScript 

HTML + JavaScript (json_example.html) 

<!DOCTYPE html> 

<html> 

<head> 

  <title>AJAX JSON Example</title> 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  15 

 

  <script> 

    function loadData() { 

      var xhr = new XMLHttpRequest(); 

      xhr.open("GET", "data.php", true); 

      xhr.onreadystatechange = function() { 

        if (xhr.readyState == 4 && xhr.status == 200) { 

          var response = JSON.parse(xhr.responseText); // convert JSON to JS object 

          document.getElementById("result").innerHTML = 

            "Name: " + response.name + "<br>" + 

            "Age: " + response.age + "<br>" + 

            "City: " + response.city; 

        } 

      }; 

      xhr.send(); 

    } 

  </script> 

</head> 

<body> 

  <h2>AJAX JSON Example</h2> 

  <button onclick="loadData()">Load JSON Data</button> 

  <div id="result"></div> 

</body> 

</html> 

PHP File (data.php) 

<?php 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  16 

 

// create an array 

$data = array( 

  "name" => "NaishaL", 

  "age" => 23, 

  "city" => "Surat" 

); 

 

// convert array to JSON and send it 

echo json_encode($data); 

?> 

O/p 

Clicking the button shows: 

Name: NaishaL 

Age: 23 

City: Surat 

 

 

 

 

 

 

 

 

 

 

 

 

 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  17 

 

 

3.1 PHP with MySQL/MongoDB 

3.1.1 Connecting to databases using mysqli or PDO 

3.1.2 Creating databases and tables 

3.1.3 Executing CRUD operations: INSERT, SELECT, UPDATE, DELETE 

3.1.4 Using clauses: WHERE, ORDER BY, LIMIT 

3.2 AJAX for Backend Integration 

3.2.1 Introduction to AJAX and asynchronous requests 

3.2.2 Sending AJAX requests to PHP 

3.2.3 Real-time search functionality 

3.2.4 JSON data exchange with JavaScript and PHP 

3.3 CodeIgniter Introduction 

3.3.1 Installing and configuring CodeIgniter (CI4) 

3.3.2 Understanding MVC architecture in CodeIgniter 

3.3.3 Creating models, views, and controllers 

3.3.4 URL routing and default controller setup 

3.4 Core Features in CodeIgniter 

3.4.1 Form validation using CI validation library 

3.4.2 Session management and flashdata 

 

 

 

 

 

 

 

 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  18 

 

 

 

 

 

 

CodeIgniter Introduction 

• CodeIgniter is a powerful PHP framework with a very small footprint, built for 

developers who need a simple and elegant toolkit to create full-featured web 

applications.  

• CodeIgniter was created by EllisLab, and is now a project of the British Columbia 

Institute of Technology. 

• CodeIgniter is an application development framework, which can be used to 

develop websites, using PHP. 

• It is an Open-Source framework.  

• It has a very rich set of functionalities, which will increase the speed of website 

development work. 

Prerequisite for CodeIgniter 

• Knowledge of PHP. 

Advantage of using CodeIgniter 

•  It has a very rich set of libraries and helpers. 

• save a lot of time, if you are developing a website from scratch. 

• website built in CodeIgniter is secure too, as it has the ability to prevent various 

attacks that take place through websites. 

Installation of CodeIgniter & Configuration of CodeIgniter 

Step 1: Download the CodeIgniter from the link CodeIgniter 

https://www.codeigniter.com/download


504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  19 

 

 
Step 2: Unzip folder 

Step3: Upload all files and folders to your server. 

Step4: After uploading all the files to your server, visit the URL of your server, e.g., 

www.domain-name.com. 

 

Architecture of CodeIgniter application 

• whenever a request comes to CodeIgniter, it will first go to index.php page. 

• In the second step, Routing will decide whether to pass this request to step-3 for 

caching or to pass this request to step-4 for security check. 

• If the requested page is already in Caching, then Routing will pass the request to 

step-3 and the response will go back to the user. 

• If the requested page does not exist in Caching, then Routing will pass the requested 

page to step-4 for Security checks. 

• Before passing the request to Application Controller, the Security of the submitted 

data is checked. After the Security check, the Application Controller loads 

necessary Models, Libraries, Helpers, Plugins and Scripts and pass it on to View. 

• The View will render the page with available data and pass it on for Caching. As the 

requested page was not cached before so this time it will be cached in Caching, to 

process this page quickly for future requests. 

 

http://www.domain-name.com/


504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  20 

 

 
 

Directory Structure 

 
 

Application Application folder contains all the code of application that you are 

building. This is the folder where you will develop your project. 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  21 

 

 
Config This folder contains various files to configure the 

application. With the help of config.php file, user 

can configure the application. 

Using database.php file, user can configure the 

database of the application. 

Controller This folder holds the controllers of your application. 

It is the basic part of your application. 

Database The database folder contains core database drivers 

and other database utilities. 

Helper In this folder, you can put helper class of your 

application. 

Language This folder contains language related files. 

Libraries This folder contains files of the libraries developed 

for your application. 

Models The database login will be placed in this folder. 

Third-party In this folder, you can place any plugins, which will 

be used for your application. 

Views Applications HTML files will be placed in this 

folder. 
 

System This folder contains CodeIgniter core codes, libraries, helpers and 

other files, which help make the coding easy. These libraries and 

helpers are loaded and used in web app development. 

Core This folder contains CodeIgniters core class. Do not 

modify anything here. All of your work will take 

place in the application folder. Even if your intent is 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  22 

 

to extend the CodeIgniter core, you have to do it with 

hooks, and hooks live in the application folder. 

Database The database folder contains core database drivers 

and other database utilities. 

Fonts  The fonts folder contains font related information and 

utilities. 

Helpers The helpers folder contains standard CodeIgniter 

helpers (such as date, cookie, and URL helpers). 

Language The language folder contains language files. You can 

ignore it for now. 

Libraries The libraries folder contains standard CodeIgniter 

libraries (to help you with e-mail, calendars, file 

uploads, and more). You can create your own 

libraries or extend (and even replace) standard ones, 

but those will be saved in 

the application/libraries directory to keep them 

separate from the standard CodeIgniter libraries 

saved in this particular folder. 
 

 

3.3.2 Understanding MVC architecture in CodeIgniter 

CodeIgniter is based on the Model-View-Controller (MVC) development pattern. MVC is 

a software approach that separates application logic from presentation. In practice, it 

permits your web pages to contain minimal scripting since the presentation is separate 

from the PHP scripting. 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  23 

 

 

Model Model represents your data structures. Typically, your model classes 

will contain functions that help you retrieve, insert and update 

information in your database. 

View The View is information that is being presented to a user. A View 

will normally be a web page, but in CodeIgniter, a view can also be a 

page fragment like a header or footer. It can also be an RSS page, or 

any other type of page. 

Controller The Controller serves as an intermediary between the Model, the 

View, and any other resources needed to process the HTTP request 

and generate a web page. 

 

3.3.3 Creating Models, Views, and Controllers 

1. Controller Example 

Create file: /app/Controllers/Hello.php 

<?php 

namespace App\Controllers; 

 

class Hello extends BaseController 

{ 

    public function index() 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  24 

 

    { 

        return view('welcome_message'); // loads a view 

    } 

 

    public function greet($name = 'Guest') 

    { 

        return "Hello, " . $name; 

    } 

} 

2. View Example 

Create file: /app/Views/welcome_message.php 

<!DOCTYPE html> 

<html> 

<head> 

    <title>CodeIgniter 4</title> 

</head> 

<body> 

    <h1>Welcome to CodeIgniter 4!</h1> 

    <p>This is a simple view file.</p> 

</body> 

</html> 

3. Model Example 

Create file: /app/Models/UserModel.php 

<?php 

namespace App\Models; 

use CodeIgniter\Model; 

 

class UserModel extends Model 

{ 

    protected $table = 'users';   // Database table 

    protected $primaryKey = 'id'; 

    protected $allowedFields = ['name', 'email', 'password']; 

} 

4. Using Model in Controller 

<?php 

namespace App\Controllers; 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  25 

 

use App\Models\UserModel; 

 

class User extends BaseController 

{ 

    public function index() 

    { 

        $model = new UserModel(); 

        $data['users'] = $model->findAll(); // Fetch all records 

        return view('user_list', $data); 

    } 

} 

5. View for User List 

/app/Views/user_list.php 

<h2>User List</h2> 

<ul> 

<?php foreach ($users as $user): ?> 

    <li><?= $user['name'] ?> - <?= $user['email'] ?></li> 

<?php endforeach; ?> 

</ul> 

 

3.3.4 URL Routing and Default Controller Setup 

 

URL Structure in CI4 

Default format: 

http://localhost:8080/controller/method/parameters 

 

Example: 

 

http://localhost:8080/hello/greet/John → Calls Hello::greet("John") 

 

Route Configuration 

Located in /app/Config/Routes.php 

Example: 

$routes->get('/', 'Home::index');               // Default homepage 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  26 

 

$routes->get('about', 'Pages::about');          // Custom route 

$routes->get('user/(:num)', 'User::profile/$1'); // Passing parameter 

Default Controller Setup 

In /app/Config/Routes.php: 

$routes->setDefaultController('Home'); 

$routes->setDefaultMethod('index'); 

This means when you open http://localhost:8080/, it will load Home::index(). 

 

3.4 Core Features in CodeIgniter 
 

3.4.1 Form Validation using CI Validation Library 

Purpose 

• Ensures user input is valid before processing (e.g., email format, required fields). 

• CI4 has a built-in Validation library. 

Example: Registration Form 

Controller: app/Controllers/Register.php 

<?php 

namespace App\Controllers; 

 

class Register extends BaseController 

{ 

    public function index() 

    { 

        helper(['form']); // load form helper 

        return view('register_form'); 

    } 

 

    public function submit() 

    { 

        helper(['form']); 

        $validation = \Config\Services::validation(); 

 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  27 

 

        $rules = [ 

            'username' => 'required|min_length[3]|max_length[20]', 

            'email'    => 'required|valid_email', 

            'password' => 'required|min_length[6]' 

        ]; 

 

        if (!$this->validate($rules)) { 

            return view('register_form', [ 

                'validation' => $this->validator 

            ]); 

        } else { 

            return "Form submitted successfully!"; 

        } 

    } 

} 

View: app/Views/register_form.php 

<form action="/register/submit" method="post"> 

    <input type="text" name="username" placeholder="Username"><br> 

    <input type="text" name="email" placeholder="Email"><br> 

    <input type="password" name="password" placeholder="Password"><br> 

    <button type="submit">Register</button> 

</form> 

 

<?php if(isset($validation)): ?> 

    <div style="color:red;"> 

        <?= $validation->listErrors() ?> 

    </div> 

<?php endif; ?> 

Route: app/Config/Routes.php 

$routes->get('register', 'Register::index'); 

$routes->post('register/submit', 'Register::submit'); 

Output: 

If fields are empty → shows validation errors. 

If valid input → "Form submitted successfully!" 

3.4.2 Session Management and Flashdata 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  28 

 

Purpose 

• Sessions store data across multiple requests (like user login info). 

• Flashdata → temporary session data (available only for the next request). 

Example: Login 

Controller: app/Controllers/Auth.php 

<?php 

namespace App\Controllers; 

 

class Auth extends BaseController 

{ 

    public function login() 

    { 

        session()->set(['username' => 'JohnDoe']); 

        session()->setFlashdata('message', 'You are logged in!'); 

        return redirect()->to('/auth/dashboard'); 

    } 

 

    public function dashboard() 

    { 

        $username = session()->get('username'); 

        $message  = session()->getFlashdata('message'); 

        return view('dashboard', ['username' => $username, 'message' => $message]); 

    } 

 

    public function logout() 

    { 

        session()->destroy(); 

        return "Logged out!"; 

    } 

} 

View: app/Views/dashboard.php 

<h2>Dashboard</h2> 

<p>Welcome, <?= esc($username) ?>!</p> 

 

<?php if ($message): ?> 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  29 

 

    <p style="color:green;"><?= esc($message) ?></p> 

<?php endif; ?> 

Routes: 

$routes->get('auth/login', 'Auth::login'); 

$routes->get('auth/dashboard', 'Auth::dashboard'); 

$routes->get('auth/logout', 'Auth::logout'); 

Output: 

• Open /auth/login → redirects to dashboard. 

• Dashboard shows: "Welcome, JohnDoe! You are logged in!" (flashdata disappears 

on refresh). 

• /auth/logout → "Logged out!". 

3.4.3 Handling File Uploads 

Purpose 

• CI4 provides an easy API for handling file uploads safely. 

Example: Upload Profile Picture 

Controller: app/Controllers/Upload.php 

<?php 

namespace App\Controllers; 

 

class Upload extends BaseController 

{ 

    public function index() 

    { 

        helper(['form']); 

        return view('upload_form'); 

    } 

 

    public function store() 

    { 

        $file = $this->request->getFile('userfile'); 

 

        if ($file->isValid() && !$file->hasMoved()) { 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  30 

 

            $newName = $file->getRandomName(); 

            $file->move(WRITEPATH . 'uploads', $newName); 

            return "File uploaded successfully: " . $newName; 

        } else { 

            return "File upload failed!"; 

        } 

    } 

} 

View: app/Views/upload_form.php 

<form action="/upload/store" method="post" enctype="multipart/form-data"> 

    <input type="file" name="userfile"><br> 

    <button type="submit">Upload</button> 

</form> 

Routes: 

$routes->get('upload', 'Upload::index'); 

$routes->post('upload/store', 'Upload::store'); 

Output: 

• Uploads file into /writable/uploads/. 

• Shows: "File uploaded successfully: randomname.jpg". 

 

3.4.4 Loading Helpers and Libraries 

Helpers 

• Simple functions (e.g., form, url, text). 

• Load them in controller or globally. 

Example: 

helper(['url', 'text']); 

 

echo base_url();  // prints http://localhost:8080/ 

echo word_limiter("This is a very long sentence", 4); 



504: Web Framework & Services  
Unit  3: Database  Interaction And 

Code Ign iter Framework  

 

  

TYBCA (Sem –  5)  31 

 

 

Libraries (Services) 

• Classes that provide advanced features (e.g., email, validation, session). 

• Load using \Config\Services. 

Example: Send Email 

$email = \Config\Services::email(); 

$email->setFrom('you@example.com', 'Your Name'); 

$email->setTo('friend@example.com'); 

$email->setSubject('Test Email'); 

$email->setMessage('Hello from CI4 email library!'); 

 

if ($email->send()) { 

    echo "Email sent!"; 

} else { 

    echo $email->printDebugger(); 

} 


